UserWarning: The priors do not sum to 1. Renormalizing [python] -
all needed modules code below imported
date = [] usage = [] date = genfromtxt(‘date.csv’) usage = genfromtxt(‘usage.csv’) test = genfromtxt(‘test.csv’) print (len(date)) print (len(usage)) dataframe = pd.dataframe({ ‘date’: (date), ‘usage’: (usage) })
drop nan data
dataframe = dataframe.dropna() print (dataframe) df = dataframe.drop(dataframe.index[[-1,-4]]) array = df.values x = array[:,0:1] y = array[:,1] validation_size = 0.20 seed = 7 x_train, x_validation, y_train, y_validation = model_selection.train_test_split(x, y, test_size=validation_size, random_state=seed) seed = 7 scoring = ‘accuracy’
spot check algorithms
models = [] models.append((‘lr’, logisticregression())) models.append((‘lda’, lineardiscriminantanalysis())) models.append((‘knn’, kneighborsclassifier())) models.append((‘cart’, decisiontreeclassifier())) models.append((‘nb’, gaussiannb())) models.append((‘svm’, svc()))
evaluate each model in turn
results = [] names = [] name, model in models: kfold = model_selection.kfold(n_splits=10, random_state=seed) cv_results = model_selection.cross_val_score(model, x_train, y_train, cv=kfold, scoring=scoring) results.append(cv_results) names.append(name) msg = “%s: %f (%f)” % (name, cv_results.mean(), cv_results.std()) print(msg)
compare algorithms
fig = plt.figure() fig.suptitle(‘algorithm comparison’) ax = fig.add_subplot(111) plt.boxplot(results) ax.set_xticklabels(names) plt.show()
error message :
1.userwarning: priors not sum 1. renormalizing userwarning) traceback (most recent call last):
file “data_0.py”, line 111, in
2.the line error shows up:
cv_results = model_selection.cross_val_score(model, x_train, y_train,cv=kfold, scoring=scoring) file “/users/nelsondsouza/anaconda/lib/python2.7/sitepackages/sklearn/model_selection/_validation.py”, line 140, in cross_val_score train, test in cv_iter) file “/users/nelsondsouza/anaconda/lib/python2.7/sitepackages/sklearn/externals/joblib/parallel.py”, line 758, in __call__ while self.dispatch_one_batch(iterator): file “/users/nelsondsouza/anaconda/lib/python2.7/sitepackages/sklearn/externals/joblib/parallel.py”, line 608, in dispatch_one_batch self._dispatch(tasks) file “/users/nelsondsouza/anaconda/lib/python2.7/sitepackages/sklearn/externals/joblib/parallel.py”, line 571, in _dispatch job = self._backend.apply_async(batch, callback=cb) file “/users/nelsondsouza/anaconda/lib/python2.7/sitepackages/sklearn/externals/joblib/_parallel_backends.py”, line 109, in apply_async result = immediateresult(func) file “/users/nelsondsouza/anaconda/lib/python2.7/sitepackages/sklearn/externals/joblib/_parallel_backends.py”, line 326, in __init__ self.results = batch() file “/users/nelsondsouza/anaconda/lib/python2.7/sitepackages/sklearn/externals/joblib/parallel.py”, line 131, in __call__ return [func(*args, **kwargs) func, args, kwargs in self.items] file “/users/nelsondsouza/anaconda/lib/python2.7/sitepackages/sklearn/model_selection/_validation.py”, line 238, in _fit_and_score estimator.fit(x_train, y_train, **fit_params) file “/users/nelsondsouza/anaconda/lib/python2.7/sitepackages/sklearn/discriminant_analysis.py”, line 468, in fit self._solve_svd(x, y) file “/users/nelsondsouza/anaconda/lib/python2.7/sitepackages/sklearn/discriminant_analysis.py”, line 378, in solve_svd fac = 1. / (n_samples – n_classes)
3.zerodivisionerror: float division zero
Comments
Post a Comment