python - Numpy match indexing dimensions -
problem
i have 2 numpy arrays, a
, indices
.
a
has dimensions m x n x 10000. indices
has dimensions m x n x 5 (output argpartition(a, 5)[:,:,:5]
). m x n x 5 array containing elements of a
corresponding indices
.
attempts
indices = np.array([[[5,4,3,2,1],[1,1,1,1,1],[1,1,1,1,1]], [500,400,300,200,100],[100,100,100,100,100],[100,100,100,100,100]]) = np.reshape(range(2 * 3 * 10000), (2,3,10000)) a[...,indices] # gives array of size (2,3,2,3,5). want subset of these values np.take(a, indices) # shape right, flattens array first np.choose(indices, a) # fails because of shape mismatch.
motivation
i'm trying 5 largest values of a[i,j]
each i<m
, j<n
in sorted order using np.argpartition
because arrays can large.
you can use advanced-indexing
-
m,n = a.shape[:2] out = a[np.arange(m)[:,none,none],np.arange(n)[:,none],indices]
sample run -
in [330]: out[330]: array([[[38, 21, 61, 74, 35, 29, 44, 46, 43, 38], [22, 44, 89, 48, 97, 75, 50, 16, 28, 78], [72, 90, 48, 88, 64, 30, 62, 89, 46, 20]], [[81, 57, 18, 71, 43, 40, 57, 14, 89, 15], [93, 47, 17, 24, 22, 87, 34, 29, 66, 20], [95, 27, 76, 85, 52, 89, 69, 92, 14, 13]]]) in [331]: indices out[331]: array([[[7, 8, 1], [7, 4, 7], [4, 8, 4]], [[0, 7, 4], [5, 3, 1], [1, 4, 0]]]) in [332]: m,n = a.shape[:2] in [333]: a[np.arange(m)[:,none,none],np.arange(n)[:,none],indices] out[333]: array([[[46, 43, 21], [16, 97, 16], [64, 46, 64]], [[81, 14, 43], [87, 24, 47], [27, 52, 95]]])
for getting indices corresponding max 5 elements along last axis, use argpartition
, -
indices = np.argpartition(-a,5,axis=-1)[...,:5]
to keep order highest lowest, use range(5)
instead of 5
.
Comments
Post a Comment