python - Return multiple DataFrames from a function with Pandas -


i trying parse multiple excel sheets pandas separate individual dataframes.

my code far is:

sheet_names =[tab1, tab2] df_names = [1,2]  def initilize_dataframes(sheet_names):     name in sheet_names:        df = xls_file.parse(name) #parse xlxs sheet        df = df.transpose() #transpose dates index        new_header = df.iloc[0] #column header names         df = df[1:] #drop 1st row         df.rename(columns=new_header, inplace= true) #rename columns     return df` ` in df_names:      df_(i) = initilize_dataframes(sheet_names)#something idk  

the last 2 lines can not wrap head around. function return df, take values df_names list. , label dataframe accordingly.

for example, tab1 in excel sheet dataframe should named df_1 , looping tab2 , df_2 respectively.

it possible globals:

for i, val in enumerate(df_names):      globals()['df_' + str(vals)] = initilize_dataframes(sheet_names[i]) 

but better use dict of dataframes, sheet_names select positions enumerate, need substract 1, because python counts 0:

dfs = {} i, val in enumerate(df_names):      dfs[val] = initilize_dataframes(sheet_names[i])  print (dfs[1]) 

Comments

Popular posts from this blog

node.js - Node js - Trying to send POST request, but it is not loading javascript content -

javascript - Replicate keyboard event with html button -

javascript - Web audio api 5.1 surround example not working in firefox -