python - How to write the output of data in tensorflow -
i have been following tutorial understand linear classification model , applications. have taken different example outside census data , can accuracy evaluate
.
now interested print out rows of test data predicted column values.
https://www.tensorflow.org/tutorials/wide
import random import pandas import tensorflow tf import tempfile import numpy np df_train = pandas.read_csv('input/train.csv', usecols=['sex', 'age', 'fare','survived', 'sibsp']) df_test = pandas.read_csv('input/test.csv', usecols=['sex', 'age', 'fare', 'sibsp']) df_test['survived'] = 0 categorical_columns = ['sex'] continuous_columns = ['age', 'fare', 'sibsp'] df_train_nona = df_train.dropna() df_test_nona = df_test.dropna() print(df_test_nona) def input_fn(df): continuous_cols = {k: tf.constant(df[k].values) k in continuous_columns} categorical_cols = {k: tf.sparsetensor( indices=[[i,0] in range(df[k].size)], values=df[k].values, dense_shape=[df[k].size, 1]) k in categorical_columns } feature_cols = dict(list(continuous_cols.items()) + list(categorical_cols.items())) label = tf.constant(df['survived'].values) return feature_cols, label def train_input_fn(): return input_fn(df_train_nona) def eval_input_fn(): return input_fn(df_test_nona) gender = tf.contrib.layers.sparse_column_with_keys( column_name='sex', keys=['female', 'male'] ) pclass = tf.contrib.layers.real_valued_column('pclass') cabin = tf.contrib.layers.sparse_column_with_hash_bucket("cabin", hash_bucket_size=1000) age = tf.contrib.layers.real_valued_column('age') fare = tf.contrib.layers.real_valued_column('fare') parch = tf.contrib.layers.real_valued_column('parch') sibsp = tf.contrib.layers.real_valued_column('sibsp') model_dir = tempfile.mkdtemp() m = tf.contrib.learn.linearclassifier(feature_columns=[gender, age, fare, sibsp], optimizer=tf.train.ftrloptimizer( learning_rate=0.1, l1_regularization_strength=0.001 ),model_dir=model_dir) m.fit(input_fn = train_input_fn, steps=400)
the best way take input data , run in through network function. believe should sess.run(output_tensor, feed_dict={x: input_data})
.
Comments
Post a Comment